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Abstract 

The covariant derivation of the electromagnetic boundary conditions seems not to have 
been given. It is presented here, for general electromagnetic sources and distributions of 
matter which are independent of time. Thus the boundary conditions are suitable for 
use in stationary solutions in General Relativity. 

1. Geometrical Preliminaries 

In V4, the manifold of  space-time, select a vector t,,  not null. Select a 
finite part, V3 say, of  the hypersurface orthogonal to t,,  and call the surface 
of  V3, VE. The V3 and V2 must be chosen as continuous piecewise diffeo- 
morphic images of B 3 and S z, the closed unit Euclidean ball of  three 
dimensions and its surface, respectively. Let V2 have a normal n~ in the 
hypersurface orthogonal to t,,  so that t u n " =  O. By suitable choice of  V 3 
and V2, n o is to be made not null anywhere on V2; in particular, n u may 
make discontinuous changes from space-like to time-like and back. In 
the closed V 2, select a closed Vl, an image as above of S ~, the unit circle, 
with a tangent L w V~ must be chosen such that L ,  is not null, but L o may 
change discontinuously from space-like to time-like and back. Let Wz 
be any open two surface, an image as above of E 2, the open unit disc, 
such that W 2 0 V 2 = VI,  and that W2 has a non-null normal N o in V3. 
N~ must be either time-like or space-like all over W2, and must not change 
f rom one to the other. N ,  is to lie in V3; thus N , t  ~ = 0 .  All these vectors 
are units. W2 (respectively Vl) divides Va (V2) into two regions, E and I 
(8  and J )  say. The letters E, I, ~,  J ,  W2, are used to denote functions 
defined in that region (see Fig. 1). 

These regions may be regarded as successive embeddings. Use x ~, x A, x" 
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Figure 1.--(i) a V~ in V4, (ii) a V3. 

(a = 1, 2, 3, 4; A = 1, 2, 3; a = 1, 2) to denote coordinates in general V4, 
V3, V2, respectively. Then for example 

E = {x~: x ~ =f~(xA)} 
g 

= {xA: x A = g~ (x~  
6~ 

In particular, W2 is regarded as being embedded in either E or I: 

W2 : {x~ :  x ~ = hA(xa)} 
E 

= { x ~ :  x A = h ~ ( x " ) )  
I 

Correspondingly, a scalar r defined in a region of V4 which includes 
for example E, has successively induced values 

r = r  ~ = f ~ ( x A ) )  
E E 

c~ = r  A = g a ( x " ) )  
g E g 

and similarly for L A scalar ~b induces (~)w~ on Wz: 
E E 

and similarly for I. Define [q~] as 

Induced scalars are assumed to be the continuously attained limits of the 
inducing scalars. In Section 2, it is assumed that the scalars in the integrands 
are the induced scalars in the appropriate region. 
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Define two limiting processes, Lira and Lira, such that for example 
E I 

under Lira, 
E 

E--~ O, nu -+ N~,, C -+ W2, r -+ (r 
E E E 

Lira, is similar except that under Lim n,1 ~ - N ,  by choice of Nu as pointing 

into E. 
Finally, given a hypersurface B in V4: 

B = ( x ~ :  x ~ = x~(x~)} 

define tangents and unit tangents respectively by 

Thei~ define 

~ = Ox a 

v 
gAB = g ~  t z t B 

gas s.t. gAB gnc = 3~ 

I B ~ B A  + 

2. Derivation o f  the Boundary Conditions 

The integrations used here are those given by Synge (1960), Retardation 
is not used in the integration of the field equations, so the resulting boundary 
conditions apply only to time-independent systems. It is assumed that 
Einstein's Field Equation is to be solved in V4, for some distributions of 
matter, charge, current, and fieldS of polarisation. V4 may be divided into 
regions for this purpose. Within the regions, the metric and all material 
fields are assumed to have sufficient differentiability. Between the regions, 
there are hypersurfaces of discontinuity of the metric and material fields. 
The boundary conditions on the electromagnetic fields are derived without 
any assumptions about these discontinuities, except that they may exist. 

The field equations in their most general form are: 

F~;p'O "~p~ = 0 

where ~ P ~  is the alternating tensor and 

( 2 . 1 )  

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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The conventions of Panofsky and Phillips (1962) are used, except that the 
units are Gaussian. The equations hold throughout each region of t"4. 

To find the conditions resulting from (2.1), select any V3 with corre- 
sponding t,, V2, and n~,. Then 

I F.~w ta ~"Vp~ d3 v = ~ % Fuvnp to ~"VO~ d2 v 
V3 v2 

= o ( 2 . 6 )  

This holds for any V2. Selecting W2 (and so Vt), and applying the limiting 
processes in E and I, one has from (2.6) 

f [F~v Np to ~'"P~ d 2 v = 0 (2.7) 
W2 

This holds for any part of the selected Wz, so that 

[F,v Np to ~.~po] = 0 (2.8) 

To write this in terms of the potentials, use (2.5) in (2.6): 

f %A~,~n o t~ ~,~o~ v (2.9) d 2 0 
V2 

Now, V2 is to be regarded as d o U J .  The integral theorem then relates the 
integrals over go and J to integrals round V1, and the integrals round V~ 
from go and J have opposite signs. Writing dx" along Vz as dx u = L u d I v, 
one has from (2.9) 

f [AuLU ] v = d I 0 
V1 

Again this holds for any closed V~ in Wz, so that 

[A~,L'] = [t/-t vLU ] (2.10) 

for arbitrary scalars (~)w2, (~)w~. 

Before developing the conditions from (2.2), it is convenient to treat the 
four-current j r  under the limiting processes. The interpretation of the 
treatment is given in Section 3. If J"(x ~) and tU(x ~) are defined in a part 
of  V4 that contains for example E, then define 

Y~ t ~ = S~ tV(x ~' --f=(xa)) 
E E E 

Eu ( J~ t ~ d 3 v Lira 
E E E E d 

(L t ~)w~ = Lira ~ (2.1 l) 
E E w=-~0 ~ d 2 v 

w2 
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and similarly for I except that (-eu) is used. It follows that 

ws Ivt~d2v = Lim~N ~ J~t~d 3 v (2.12) 
E E E ~EE E 

and similarly for I. The ( - ~ )  is used so that the right-hand side of (2.13) 
below is the algebraic sum of I , t  ~ and I , t  ~, i.e. the net quantity on Wz. 

E E I I  

Now, (2.2) gives 
[Hu~ N" t"] = 4~r[I~ t"] (2.13) 

in the same way as (2.I) gives (2:8). By using (2.4) and (2.5), one obtains 
the alternative forms of (2.13) 

[Fu, NU t ~1 = [(A,, u - Au.,) NU t ~1 

= 4~[I. t ~ + Mu.N"  t ~] (2.14) 

3. Discussion of  the Boundary Conditions 

It is convenient to begin by setting up the relation between the classical 
geometry and the space-time geometry used here. 

Classically, there is a physical boundary B say, a two surface in space, 
with normal LV say. The classical boundary conditions are found by taking 
elements of volume or area, which link the space on either side of B, and 
collapsing them along N into elements of area or arc respectively on B. 
In Section 2, there is a two surface W2, with two normals N u and t u, but the 
limiting process effectively takes place along N u. 

It is the correspondence between N and N u which provides the connection 
between the classical and covariant derivations. 

In four space, the surface of a material body generates a time-like hyper- 
surface B in V4, having a space-like normal. This is to be identified with 
N u. Then, in each hypersurface of constant time and in comoving co- 
ordinates, N u = -(N,  0). 

Now, for a given space-like N u (i.e. for given _N), there will be three 
independent vectors t u in V4 such that Nut" = 0. Call these tuA (A = 1, 2, 4, 
because one of them, tu4, must be time-like). Thus, there will be three 
independent W2's for which pairs of N,, tvA, are the normals. They are 
the three independent Wz's which can be constructed in B, N u is the normal 
to B, and t,A are the tangents to B. The tua include L u. 

Since tu4 is time-like, the corresponding W2 is space-like, and is an 
element of the phYSical boundary B. The V3 associated with t,4 is also 
space-like, and forms the element of volume of classical theory (see Fig. 
l(ii)). 

The other two of tua are space-like. The WE corresponding to each of 
them contains space-like and time-like directions, since N,  is space-like, 
whilst each V3 is part of the history of a space-like two surface, In these 
cases, W2 at some instant forms the classical arc in B at that instant, whilst 
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V2 forms the dosed curve linking B. There will be two independent arcs 
in ff corresponding to the two space-like tua (see Fig. 2). 

Next, the definition (2.tl) of the surface current may be discussed. 
Under Lira, the integral over E becomes an integral over the whole of W2, 

E 
and the integrand becomes its induced value on W2. Thus 

LimeN f J~t~d3v 

is the integral over W2 &the  induced current on W> To recover the induced 
current itself, as a function of position on Wz, namely the left-hand side 
of (2.11), one forms the right-hand side of (2.11) and understands that Wa 
goes to zero area about the position in question on W2. There are three 

~ a t  t i m e  = 

C - oo~176 

/ X W o a t . m o  = 
[ . . ~ L / ~  - = = c o n s t a n t .  

V ~  n~ 

Figure 2.--A I/a for which t. is space-like. 

tu's in (2.11), for given Nu, so that, given Ju in some region of V4 which 
contains B, (2.11) defines the surface current vector induced on B: 

1~ = [L t,~] 

where, for each A, the appropriate W2 is understood. As a vector in V4, 
the surface current is given by 

I~=IAt r 
SO that 

I~N~=O 

as is necessary. However, the existence o f l a  for a given fly and N ~' depends 
upon there being suitable singularities in JV such that under Lira, Lira, 

E ! 

and Lira W2-+ 0, the (I,t~)w= exist over at least part of W2. As in the 
classical case, this will be ensured if a surface current exists and if B is 
chosen to coincide with the surface in which the current exists. 

Now, the boundary conditions may be written as 

[Fu~ Np t~a ,quips] = 0 (3.1) 
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[Ho~ N" t~] = 4z, Ia (3.2) 
o r  

o v [Fo~ N o t~] = 4rrIA + 4rr[Mo,, N tA] (3.3) 

and in terms of the potentials 

[A u t ~] -- [t/t ,, t ~] (3.4) 

i(A~;, = Ao;~) N ~ t~] = 47rlA + 47r[Mo~ N o t;] (3.5) 

The discontinuity brackets still refer to the two surfaces in V4. If t t ,  4 is used 
in (3. l) to (3.5), then the classical element of area is intended, but, if A = l, 
2, then the classical arcs arise only for time = constant. 

As some examples, (3.1) for A = 4 gives 

B. N = continuous 

and for A = 1,2, gives 
E x _N = continuous 

where B, E are the magnetic induction and electric intensity, respectively, 
in the limit of flat space-time. 

In (3.4), the right-hand side presumably corresponds to double layers 
of current and charge, by analogy with the classical case. However, (3.4) 
refers only to the tangential components 

AA=Aut~  

of A,  on B. The normal component (of the discontinuity) 

[AN] = [eN Au N~'] 

does not occur, and is set to zero by convention. 
In (3.5), sufficient conditions for the terms 

[Am~NVtl] = [AN,~ ~ t A - A ~ N  ;, t,~] 

to vanish are that [As] = [ A A ]  = 0 and that the first and second induced 
fundamental forms on B be continuous: 

g v 
[h~,.] = [ g ~  ~A ~.1 = 0 

, . ( 3 . 6 )  
[kAB] = [-N.;~ ~'A rB] = 0 

(3.5) then reduces to 
,u v [A~;,N tA] = 4rrlA + 4rr[Mu~N~ t,~] (3.7) 

If  
A~= ANN~ + A~t~ 

is substituted in the left-hand side of (3.7), then 
/.t v [A~;,N t,~]=[AA.N+ AuN~;~NOt~ + ABt~uNOt~] (3.8) 

where r == r ~'. The first term in the right-hand side of (3,8) is the 
classical normal derivative of the tangential components of the potential. 
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Again, the normal derivative of  the normal component  does not occur and 
is made continuous, The other two terms in the right-hand side of  (3.8) 
involve Ricci rotation coefficients of  the boundary tetrad (N., tua ). These 
do not vanish under (3.6) in a general 114, so that (3.8) reveals a relativistic 
interaction between the metric and the electromagnetic potentials. 

A relativistic effect on the fields is contained in (3.1). I f  g = det Igor] is 
discontinuous across B, then (3.1) shows that the invariant components of  
F.~ on N,, t.a, are not by themselves continuous across B. This effect 
vanishes under (3.6). 
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